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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has caused a global pandemic of coronavirus disease 2019 
(COVID-19), with over 84.66 million infections and 1.83 mil-

lion deaths as reported on 3 January 2021 (refs. 1,2). SARS-CoV-2 is 
a positive-sense, single-stranded RNA virus. SARS-CoV-2 and sev-
eral related beta-coronaviruses, including SARS-CoV and Middle 
East respiratory syndrome coronavirus (MERS-CoV), are highly 
pathogenic. Infections can lead to severe acute respiratory syn-
drome, loss of lung function and, in severe cases, death. Compared 
to SARS-CoV and MERS-CoV, SARS-CoV-2 has a higher capac-
ity of human-to-human infections, which resulted in the rapidly 
growing pandemic3. Finding an effective treatment for COVID-19, 
potentially also through drug repurposing, is an urgent but unmet 
medical need.

Suramin (Fig. 1a) is a century-old drug that has been used to 
treat African sleeping sickness and river blindness4,5. It has also been 
shown to be effective in inhibiting the replication of a wide range 
of viruses, including enteroviruses6, Zika virus7, Chikungunya8 
and Ebola viruses9. The viral inhibition mechanisms of suramin 
are diverse, including inhibition of viral attachment, viral entry 
and release from host cells in part through interactions with 
viral capsid proteins7,8,10,11. Recently, suramin has been shown to 
inhibit SARS-CoV-2 infection in cell culture by preventing cel-
lular entry of the virus12. Here we report that suramin is also a 
potent inhibitor of the SARS-CoV-2 RNA-dependent RNA poly-
merase (RdRp), an essential enzyme for the viral life cycle. The 
potency of suramin in biochemical RdRp inhibition assays is at least 
20-fold more potent than remdesivir, the current Food and Drug 
Administration-approved nucleotide drug for the treatment of 

COVID-19. The activity of suramin in cell-based viral inhibition is 
similar to remdesivir because the highly negative charge of suramin 
prevents efficient cellular uptake. A cryogenic electron microscopy 
(cryo-EM) structure reveals that suramin binds to the RdRp active 
site, blocking the binding of both RNA template and primer strands. 
These results provide a structural template for the design of next 
generation suramin derivatives as SARS-CoV-2 RdRp inhibitors.

Results
Inhibition of RdRp and anti-SARS-CoV-2 by suramin. The core 
RNA polymerase of SARS-CoV-2 is composed of nonstructural protein  
nsp12 with two accessary subunits nsp7 and nsp8 (refs. 13,14). 
Incubation of the purified nsp12–7–8 complex (Extended Data 
Figs. 1a,b) with a 30-base template and 20-base primer (poly-U in 
Fig. 1b) allowed primer extension to the same length as the template 
in the presence of saturated concentrations of ATP as illustrated in 
a gel-based assay (lane 1 in Fig. 1c). Addition of 8–32 µM suramin 
nearly abolished the elongation of the primer strand while it required 
100–1,000 µM of remdesivir in its triphosphate form (RDV-TP) to 
achieve the same degree of inhibition under the same conditions15. 
Addition of 100 µM suramin completely blocked the formation of 
RdRp–RNA complex, while it required more than 5 mM of RDV-TP 
to inhibit the binding of RdRp to RNA (Fig. 1d and Extended Data 
Fig. 1c). Solution based assays of RdRp inhibition determined 
that the half-maximal inhibition concentration (IC50) of suramin 
is 0.26 µM (Fig. 1e), and the IC50 for RDV-TP is 6.21 µM under 
identical assay conditions (Extended Data Fig. 1d), suggesting that 
suramin is at least 20-fold more potent than RDV-TP. Cell-based 
experiments indicated that suramin was able to inhibit SARS-CoV-2 
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duplication in Vero E6 cells with a half-maximal effective concen-
tration (EC50) of roughly 2.9 µM, which is about the same range as 
remdesivir in the same assay (Fig. 1f and Extended Data Fig. 1e)16. 
The apparent weaker inhibition of suramin in cell-based assays 
than in enzyme inhibition assays may be due to the highly negative 
charge of suramin that prevent its efficient uptake by the host cells. 
The CC50 (concentrations of drug required to reduce cell viability 
by 50%) of suramin is over 1,000 µM, indicating that its relatively 
low cytotoxicity that is lower than that of remdesivir (Fig. 1f and 
Extended Data Fig. 1e).

The structure of the RdRp–suramin complex. For the cryo-EM 
studies, we incubated the SARS-CoV-2 RdRp complex with tenfold 
molar excess of suramin (Methods). The structure was determined at 
a global resolution of 2.57 Å with 95,845 particles from over 8 million 

original particles auto-picked from 11,846 micrographs (Extended 
Data Fig. 2 and Table 1). The EM map reveals clear density for all key 
components of the RdRp–suramin complex, including one nsp12 
(residues S6-C22, V31-I106, M110-L895 and N911-T929), one nsp7 
(residues K2-G64), two nsp8 (residues D78-A191 for nsp8-1 and 
residues T84-A191 for nsp8-2, respectively) and two suramin mol-
ecules (Fig. 2a and Extended Data Fig. 3).

The overall structure of the RdRp–suramin complex is very simi-
lar to the apo–RdRp complex, with a root mean squared deviation 
(r.m.s.d.) of 0.465 Å for all Cα atoms between the two structures 
(Fig. 2b and Extended Data Fig. 4a). The core RdRp complex struc-
ture is also very similar to the recently solved core RdRp complex 
with nsp13 and nsp9 or nsp13 (refs. 17–19) (Extended Data Fig. 4b–d). 
Nsp12 adopts the same right-hand palm fingers configuration, with 
its catalytic active site composed of seven highly conserved motifs 
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Fig. 1 | Inhibition of RdRp by suramin and the potential anti-SARS-CoV-2 effect of suramin. a, The chemical structure of suramin. b, The 30-base 
template and 20-base primer duplex RNA with FAM (Carboxyfluorescein) at the 5′ of the primer. Poly-U was used in the gel-based elongation assay for 
SARS-CoV-2 RdRp. c, Gel assays of elongation of partial RNA duplex by the purified RdRp complex and its inhibition by suramin. EP, elongated product; 
P, primer RNA strand. d, Gel mobility shift of the RdRp–RNA complex and the effect of suramin. e, IC50 of suramin for RdRp complex, determined by two 
independent experiments and error bars are the mean ± s.d. of the data. f, EC50 of suramin for SARS-CoV-2 inhibition and CC50 of suramin for cell-based 
toxicity, determined by three independent experiments and error bars are the mean ± s.d. of the data. Uncropped images for c and d and data for the 
graphs in e and f are available as source data online.
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A–G (Fig. 3a). Two suramin molecules fit into the catalytic chamber 
(Figs. 2a,b and 3b).

The interactions of suramin with SARS-CoV-2 RdRp. One sura-
min molecule (suramin no. 1) is fit into a cavity formed by a con-
served motif G and the N terminus of motif B (Figs. 3b and 4a). The 
chemical structure of suramin has a twofold symmetry with a urea 
linker at the center (Fig. 1a). The EM density map for suramin no. 1 
is clearly defined but only for half of the suramin molecule without 
the urea linker (Fig. 4a,b). The key interactions of suramin no. 1 with 
RdRp were summarized in Fig. 4c and Supplementary Table 1, includ-
ing hydrogen bonds, charge interactions and hydrophobic pack-
ing interactions with conserved RdRp residues, which restrain the 
naphthalene-trisulfonic acid head in a relative narrow cavity. Two out 
of the three sulfonates (positions 3 and 5) form hydrogen bonds with 
the side chains from N497, K500, R569 and Q573, and the main chain 
from N497, while the sulfonate at position 1 points toward the solvent 
and forms only one hydrogen bond with the side chain of N496. The 
K577 side chain forms cation–π stacking with the naphthalene ring, 
and also forms a hydrogen bond with the amide bond linker between 
the naphthalene and benzene rings. The amide bond linker between 
the benzene rings C and D forms a hydrogen bond with main chain 
NH of G590. In addition, suramin no. 1 is in van der Waals contact 
with several residues, including L576, A580, A685, Y689 and L758. 
The second suramin molecule (suramin no. 2) is fit into the cavity 
near the catalytic active site formed by conserved motifs A, C, E and F 

(Figs. 3b and 4b). Again, only half of the molecule was observed in the 
structure with clear EM density map. The key interactions of suramin 
no. 2 with RdRp are summarized in Fig. 4d and Supplementary Table 1,  
including hydrogen bonds, charge interactions and hydrophobic 
packing interactions. Different from suramin no. 1, the sulfonate 
at position 5 of suramin no. 2 points toward the solvent and forms 
only one hydrogen bond with the side chain of R555, while the other 
two sulfonates at positions 1 and 3 form hydrogen bonds with the 
side chains from K551, R553, R555 and R836, and the main chains 
from A550 and K551. Meanwhile the side chain of R555 also forms a 
hydrogen bond with the amide bond linker between the naphthalene 
and benzene rings. The R836 side chain forms cation–π stacking with 
the benzene ring C. The NH of the benzene ring D forms a hydrogen 
bond with the side chain of D865. In addition, suramin no. 2 is in 
van der Waals contact with several residues, including H439, I548, 
S549, A840, S861 and L862. Sequence alignment with RdRp from 
several coronaviruses indicated that these suramin-contacting resi-
dues are conserved (Supplementary Fig. 1), suggesting that suramin 
may be a general inhibitor of viral RdRp.

Inhibition mechanism of suramin toward SARS-CoV-2 RdRp. 
Structural comparison of the RdRp–suramin complex with the 
remdesivir-bound RdRp complex reveals the mechanism of RdRp 
inhibition by suramin (Fig. 5a). If the base position of remdesi-
vir was defined as a +1 position, then the first suramin molecule 
occupies the space of −1 to −3 positions of the RNA template 
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strand (suramin no. 1 in Fig. 5b). The second suramin molecule 
at the active site occupies the space of the primer strand ranging 
from −4 to +1 positions (suramin no. 2 in Fig. 5c). The binding of 
these two suramin molecules thus blocks the binding of the RNA 
template–primer duplex to the active site as well as the entry of 
nucleotide triphosphate into the catalytic site, which would result 
in the direct inhibition of the RdRp catalytic activity. The direct 
inhibition mechanism of SARS-CoV-2 RdRp by suramin is differ-
ent from the suramin-mediated inhibition of the norovirus RdRp, 
which also contained two binding sites for suramin20. In each site, 
only half of suramin molecule was seen. Structural comparison of 
the SARS-CoV-2 RdRp with the norovirus RdRp reveals that only 
one of the two suramin binding sites (suramin no. 2) partially over-
lapped (Extended Data Fig. 5a,c,d). The suramin binding sites in 
norovirus RdRp do not clash with the RNA strands but one of the 
suramin binding site overlapped with the proposed nucleotide entry 
channel, thus indirectly blocking RdRp polymerization activity. 
This mechanism is different from the direct block of the binding 
of the RNA template to the SARS-CoV-2 RdRp by suramin (Fig. 5).  
In addition, structural comparisons of the SARS-CoV-2 RdRp–sur-
amin structure with the structures of the norovirus RdRp bound 
to suramin derivatives show that suramin and suramin derivatives 
bind to the RdRp with diverse conformations and orientations20,21 
(Extended Data Figs. 5b,e and 6).

Inhibition SARS-CoV-2 RdRp by suramin derivatives. Suramin 
derivatives have been explored for diverse applications, including 

parasitic diseases and cancer10. To determine the structure–activity 
relationship for suramin derivatives, we screened a set of different  
ones using in vitro RdRp primer extension assays (Fig. 6a and 
Extended Data Fig. 1f). All eight tested suramin derivatives showed 
efficient inhibition of RdRp activity (Extended Data Fig. 1g). NF157, 
NF279 and NF449 are the most potent inhibitors with IC50 of 
0.05 µM, about fivefold more potent than the parent drug (Fig. 6b). 
Cell-based assays showed that NF110 inhibited SARS-CoV-2 rep-
lication with an EC50 of 2.87 µM (Fig. 6c), while NF157 and NF279 
inhibited SARS-CoV-2 replication with EC50 of roughly 10 µM. The 
CC50 values of all suramin derivatives are over 1,000 µM, indicat-
ing a good safety window. However, there is a 200-fold separation 
between their biochemical potency in inhibiting RdRp activity and 
their potency in inhibiting viral replication in cell-based assays. This 
is likely due to difficulties of these suramin derivatives to be taken 
up by host cells22. Future drug formulation, for example with glycol 
chitosan-based nanoparticles23, may improve their bioavailability to 
lung tissues and their potency in inhibiting viral replication.

Discussion
The current COVID-19 pandemic evidences the need for effective 
vaccines and drug treatments for the disease. Suramin has been used 
to treat African sleeping sickness and that has also shown activity 
against a number of viruses in preclinical studies. In addition, sura-
min was shown to block SARS-CoV-2 at an earlier step of the repli-
cation cycle in time-of-addition assays12. Here, we demonstrate that 
suramin is a direct and potent inhibitor of the SARS-CoV-2 RdRp, 
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an essential enzyme for the viral life cycle. The structure reveals that 
suramin binds to the active site of RdRp, blocking the binding of 
both strands of the template–primer RNA substrate and inhibit-
ing the polymerase activity of the RdRp. Suramin derivatives also 
showed potent inhibition of RdRp activity and blocked viral replica-
tion in cell-based assays. Together, these results uncover the struc-
tural mechanism of a nonnucleotide inhibitor of the SARS-CoV-2 
RdRp. The structure and biochemical results presented in this paper 
provide a rationale to develop suramin analogs and drug formula-
tions that improve potency and efficacy of the drug. However, there 
are a number of limitations of suramin, including its high negative 
charge, which hinders its efficient entry into cell. In addition, there 
are potential risks of off-target effects on cellular polymerases and 

helicases. Nevertheless, suramin can serve as an interesting ‘tool 
compound’ for fundamental mechanistic studies into the viral RdRp, 
which could ultimately aid in drug development for COVID-19.
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Table 1 | Cryo-EM data collection, refinement and validation 
statistics

SARS-CoV-2 RdRp–suramin 
complex (EMD-30572, PDB 7D4F)

Data collection and processing

Magnification 46,773

Voltage (kV) 300

Electron exposure (e–/Å2) 68

Defocus range (μm) −0.5 to −2.0

Pixel size (Å) 1.069

Symmetry imposed C1

Initial particle images (no.) 8,557,180

Final particle images (no.) 95,845

Map resolution (Å) 2.6

 FSC threshold 0.143

Map resolution range (Å) 2.5–6.0

Refinement

Initial model used 7BV1

Model resolution (Å) 2.7

 FSC threshold 0.5

Model resolution range (Å) 28.0–2.7

Map sharpening B factor (Å2) −27.866

Model composition

 Nonhydrogen atoms 9,534

 Protein residues 1,181

 Ligands 4

B factors (Å2)

 Protein 63.49

 Ligand 64.64

R.m.s. deviations

 Bond lengths (Å) 0.012

 Bond angles (°) 0.904

 Validation

 MolProbity score 1.34

 Clashscore 5.43

 Poor rotamers (%) 0.76

 Ramachandran plot

 Favored (%) 97.77

 Allowed (%) 2.23

 Disallowed (%) 0
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Methods
Constructs and expression of the RdRp complex. The RdRp complex was 
prepared according to same method reported14 as described below. The full-length 
gene of the SARS-CoV-2 nsp12 (encodes residues 1–932) was chemically 
synthesized with codon optimization (General Biosystems). The gene was cloned 
into a modified pFastBac baculovirus expression vector containing a 5′ ATG 
starting sequence and C-terminal tobacco etch virus (TEV) protease site followed 
by a His8 tag. The plasmid contains an additional methionine at the N terminus 
and GGSENLYFQGHHHHHHHH at the C terminus of nsp12. The full-length 
genes for nsp7 (encodes residues 1–83) and nsp8 (encodes residues 1–198) were 
cloned into the pFastBac vector containing a 5′ ATG starting sequence. All 
constructs were generated using the Phanta Max Super-Fidelity DNA Polymerase 
(Vazyme Biotech) and verified by DNA sequencing. All constructs were expressed 
in Spodoptera frugiperda (Sf9) cells. Cell cultures were grown in ESF 921 
serum-free medium (Expression Systems) to a density of 2–3 million cells per ml 
and then infected with three separate baculoviruses at a ratio of 1:2:2 for nsp12, 
nsp7 and nsp8 at a multiplicity of infection of about five. The cells were collected 
48 h after infection at 27 °C and cell pellets were stored at −80 °C until use.

In addition, the genes of nsp7 and nsp8 were cloned into a modified pET-32a(+) 
vector containing a 5′ ATG starting sequence and C-terminal His8 tag with a TEV 
cleavage site for expression in E. coli. Plasmids were transformed into BL21(DE3) 
(Invitrogen). Bacterial cultures were grown to an OD600 of 0.6 at 37 °C, and then 
the expression was induced with a final concentration of 0.1 mM of isopropyl 
β-d-1-thiogalactopyranoside and the growth temperature was reduced to 16 °C for 
18–20 h. The bacterial cultures were pelleted and stored at −80 °C until use.

Purification of the RdRp complex. The purification of nsp7 and nsp8 expressed 
in bacteria BL21(DE3) was similar to the purification of nsp7 and nsp8 reported 
previously14. Briefly, bacterial cells were lysed with a high-pressure homogenizer 
operating at 800 bar. Lysates were cleared by centrifugation at 25,000g for 30 min 
and were then bound to Ni-NTA beads (GE Healthcare). After washing with buffer 
containing 50 mM imidazole, the protein was eluted with buffer containing 300 mM 
imidazole. The tag was removed with incubation of TEV protease overnight and 
protein samples were concentrated with 3 or 30 kDa molecular weight cut-off 
centrifuge filter units (Millipore Corporation) and then size-separated by a 
Superdex 75 Increase 10/300 GL column in 25 mM HEPES pH 7.4, 200 mM sodium 
chloride, 5% (v/v) glycerol. The fractions for the nsp7 or nsp8 were collected, 
concentrated to about 10 mg ml−1 and stored at −80 °C until use.

Sf9 cells containing the coexpressed RdRp complex were resuspended in 
binding buffer of 25 mM HEPES pH 7.4, 300 mM sodium chloride, 25 mM 
imidazole, 1 mM magnesium chloride, 0.1% (v/v) IGEPALCA-630 (Anatrace), 
1 mM tris(2-carboxyethyl)phosphine (TCEP), 10% (v/v) glycerol with additional 
EDTA-free Protease Inhibitor Cocktail (Bimake) and then incubated with 
agitation for 20 min at 4 °C. The incubated cells were lysed with a high-pressure 
homogenizer operating at 500 bar. The supernatant was isolated by centrifugation 
at 30,000g for 30 min, followed by incubation with Ni-NTA beads (GE Healthcare) 
for 2 h at 4 °C. After binding, the beads were washed with 20 column volumes of 
wash buffer of 25 mM HEPES, pH 7.4, 300 mM sodium chloride, 25 mM imidazole, 
1 mM magnesium chloride, 1 mM TCEP and 10% (v/v) glycerol. The protein 
was eluted with 3–4 column volumes of elution buffer of 25 mM HEPES pH 7.4, 
300 mM sodium chloride, 300 mM imidazole, 1 mM magnesium chloride, 1 mM 
TCEP and 10% (v/v) glycerol.

The coexpressed RdRp complex was incubated with additional nsp7 and nsp8 
from the bacterial expression in a 1:1:2 molar ratio and incubated at 4 °C for 4 h. 
Incubated RdRp complex was concentrated with a 100 kDa molecular weight 
cut-off centrifugal filter unit (Millipore Corporation) and then size-separated by 
a Superdex 200 Increase 10/300 GL column in 25 mM HEPES pH 7.4, 300 mM 
sodium chloride, 1 mM magnesium chloride and 1 mM TCEP. The fractions for 
the monomeric complex were collected and concentrated to up to 12 mg ml−1. 
Suramin sodium salt (purchased from MedChemExpress) was dissolved in water 
up to 50 mM. Suramin derivatives (purchased from TopScience) was dissolved 
in water at concentrations of 5 to 50 mM. For the suramin-bound complex, the 
concentrated RdRp complex at a concentration of 12 mg ml−1 were incubated with 
0.8 mM suramin at 4 °C for 0.5 h for the next step of EM experiments.

Cryo-EM sample preparation and data acquisition. An aliquot of 3 μl of protein 
sample of suramin-bound complex (12 mg ml−1) containing 0.0035% DDM was 
applied onto a glow-discharged 200 mesh grid (Quantifoil R1.2/1.3), blotted with 
filter paper for 3.0 s and plunge-frozen in liquid ethane using a FEI Vitrobot Mark 
IV. Cryo-EM micrographs were collected on a 300 kV Titan Krios microscope 
(FEI) equipped with a Gatan image filter (operated with a slit width of 20 eV) 
(GIF) and K3 direct detection camera. The microscope was operated at a calibrated 
magnification of ×46,773, yielding a pixel size of 1.069 Å on micrographs. In total, 
11,846 micrographs in total were collected at an electron dose rate of 22.7 e– Å−2 s−1 
with a defocus range of −0.5 μm to −2.0 μm. Each video with an accumulated dose 
of 68 e– Å−2 on sample were fractionated into a video stack of 36 image frames.

Image processing. Frames in each video stack were aligned for beam-induced 
motion correction using the program MotionCorr2 (ref. 24). CTFFIND4 (ref. 25) 

was used to determine the contrast transfer function (CTF) parameters. From this, 
10,241 good micrographs were selected for further data processing. Auto-picking 
program of Relion 3.0 (ref. 26) was used to pick the particles with the model of the 
apo–RdRp complex of COVID-19 (PDB ID 7BV1)15 as a reference, yielding a total 
of 8,557,180 picked particles. Then, the extracted particle stack was transferred 
to software Cryosparc v.2 (ref. 27) and a round of reference-free 2D classification 
was performed. Next, 3,159,808 particles were selected from classes representing 
projections of suramin-bound RdRp complex in different orientations and were 
subjected to two rounds of heterogenous refinement using a reconstruction of 
the apo–RdRp complex of COVID-19 (EMD-30209)15 as a starting map. One 
converged three-dimensional (3D) class with a high-resolution feature contains 
one nsp12, one nsp7 and two copies of nsp8. The particles from that 3D class were 
then imported back into Relion 3.0 and subjected to a round of focused alignment 
with a mask including the whole protein components. Finally, 95,845 particles from 
a 3D class showing the highest resolution feature were selected for a round of 3D 
refinement. After a round of CTF refinement and Bayesian polishing of particles, 
another round of 3D refinement was performed, yielding a final reconstruction at 
a global resolution of 2.57 Å based on the gold-standard Fourier shell correlation 
(FSC) = 0.143 criterion28. The local resolution was calculated with Relion 3.0.

Model building. The model of suramin-bound RdRp complex was built by 
docking the model of apo structure of COVID-19 RdRp (PDB ID 7BV1) into 
the density map using UCSF Chimera29, followed by ab initio model building of 
the N-terminal NiRAN domain of nsp12 and one copy of nsp8 in COOT30, and 
real space refinement using real_space_refine program in PHENIX31. The model 
statistics were calculated with MolProbity32 and listed in Table 1. Structural figures 
were prepared in Chimera or ChimeraX33.

Preparation of template–primer RNA for polymerase assays. For the poly-A 
template–primer RNA, a short RNA oligonucleotide with sequence of 5′-FAM- 
GCUAUGUGAGAUUAAGUUAU-3′ (Sangon Biotech) was used as the primer 
strand and a longer RNA oligonucleotide with a sequence of 5′-AAAAAAAAAA 
AUAACUUAAUCUCACAUAGC-3′ (Sangon Biotech) was used as template 
strand. To anneal the RNA duplex, both oligonucleotides were mixed at equal 
molar ratio in annealing buffer (10 mM Tris-HCl, pH 8.0, 25 mM NaCl and 
2.5 mM EDTA), denatured by heating to 94 °C for 5 min and then slowly cooled 
to room temperature. The poly-U template–primer RNA was prepared similar to 
poly-A with the sequences of 5′-FAM-GCUAUGUGAGAUUAAGUUAU-3′ and 
5′-UUUUUUUUUUAUAACUUAAUCUCACAUAGC-3′.

Gel mobility shift assay to detect RNA–RdRp protein binding. A gel mobility 
shift assay was performed to detect the effect of tested compounds on RNA binding 
by the RdRp complex. The binding reaction contained 20 mM Tris-HCl 8.0, 10 mM 
KCl, 6 mM MgCl2, 0.01% Triton-X100, 1 mM DTT, 1.14 U μl−1 RNase inhibitor 
(Vazyme Biotech), 9 μg of RdRp complex protein with 1 μg of poly-A template–
primer RNA and increasing amounts of corresponding compounds (0, 1, 10, 100, 
1,000 and 5,000 μM for suramin, and 0, 1, 10, 100, 1000, 5,000 and 10,000 μM for 
RDV-TP). Binding reactions were incubated for 30 min at room temperature and 
resolved on 4–20% native polyacrylamide gel (Thermo Fisher) running in 1× TBE 
buffer at 90 V for 1.5 h in a 4 °C cool room. The gel was imaged with a Tanon-5200 
Multi Fluorescence Imager according to the manufacturer’s protocol.

RdRp enzymatic activity assay and its inhibition by suramin. The purified 
SARS-CoV-2 RdRp complex from insect cell at final concentration of 1 μM was 
incubated with 3.0 μM poly-A template–primer RNA and 10 mM UTP(Macklin) 
in the presence of 1.14 U μl−1 RNase inhibitor in reaction buffer containing 20 mM 
Tris, pH 8.0, 10 mM KCl, 6 mM MgCl2, 0.01% Triton-X100 and 1 mM DTT, which 
were prepared with DEPC-treated water. The total reaction volume was 20 μl. After 
incubation for 60 min in a 37 °C water bath, 40 μl of quench buffer (94% formamide, 
30 mM EDTA, prepare with DEPC-treated water) was added to stop the reaction. A 
sample of 18 μl of reaction was mixed with 2 μl of 10× DNA loading buffer (Solarbio). 
Half of the sample (10 μl) was loaded onto a 10% urea–PAGE denatured gel, run at 
120 V for 1 h, and imaged with a Tanon-5200 Multi Fluorescence Imager. The setup 
for the inhibition assays of the RdRp by suramin is identical to the above for the 
RdRp enzymatic assays, except that suramin was added to final concentrations of 0, 1, 
2, 4, 8, 16 and 32 μM for 60 min before the addition of 10 mM UTP.

Fluorescence-based activity assay for SARS-CoV-2 RdRp. The detection of RNA 
synthesis by SARS-CoV-2 RdRp were established based on a real-time assay with 
the fluorescent dye SYTO 9 (Thermo Fisher), which binds double-stranded but not 
single-stranded RNA template molecules. The fluorescence emitted was recorded 
in real-time using a TECAN F200 with excitation and emission filters at 485 and 
520 nm, respectively. The assay records the synthesis of dsRNA in a reaction using 
a poly-U molecule as a template and ATP as the nucleotide substrate, which has 
been adapted from methods previously documented for the detection of Zika  
virus polymerase activity34. Reactions were performed in individual wells of  
black 384-well low volume round bottom plates. The standard reaction contained 
20 mM Tris-HCl, pH 8.0, 10 mM KCl, 6 mM MgCl2, 180 μM ATP, 0.2 μM poly-U 
template–primer RNA, 0.01%Trition-X100,1 mM DTT,0.025 U ml−1 RNase 
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inhibitor (Vazyme Biotech) and 0.25 μM SYTO 9 (50 μM stock solution in TE 
buffer pH 7.5). The assay was initiated by the addition of 5 μg ml−1 SARS-CoV-2 
RdRp and the fluorescence was recorded over 30 min at room temperature. The 
reaction with equivalent of dimethylsulfoxide (DMSO) was set as a maximum 
control, while the reaction with no SARS-CoV-2 RdRp was set as a minimum 
control. The reactions were carried out in the presence of 0.2 μM poly-U template–
primer RNA and 180 μM ATP, and increasing concentrations of each inhibitor. 
Fluorometric results were expressed as mean ± s.d. Statistical significance was 
analyzed by two-way analysis of variance (ANOVA) using GraphPad Prism, v.8, 
as specified in the figure legends. Km determinations were obtained by plotting 
the velocity of the reaction as a function of nucleotide or ssRNA template 
concentrations using nonlinear regression. IC50 values were obtained by fitting the 
velocity data to a four-parameter logistic equation. Kinetic parameters and IC50 
values were calculated using Sigmaplot v.11.

Vero E6 cell-based antiviral assay for suramin and suramin derivatives. African 
green monkey kidney Vero E6 cell line was obtained from American Type Culture 
Collection (no. 1586) and maintained in Dulbecco’s Modified Eagle Medium 
(Gibco Invitrogen) supplemented with 10% fetal bovine serum (Gibco Invitrogen), 
1% antibiotic/antimycotic (Gibco Invitrogen), at 37 °C in a humidified 5% CO2 
incubator. A clinical isolate of SARS-CoV-2 (nCoV-2019BetaCoV/Wuhan/
WIV04/2019) was propagated in Vero E6 cells that were tested free of mycoplasma 
contamination, and viral titer was determined by 50% tissue culture infective dose 
using immunofluorescence assay16. All the infection experiments were performed 
at biosafety level-3 (BSL-3).

Preseeded Vero E6 cells (5 × 104 cells per well) were incubated with the 
different concentrations of the indicated compounds for 1 h, and then were 
infected with SARS-CoV-2 at a multiplicity of infection of 0.01. Two hours 
later, the virus–drug mixture was removed and cells were further cultured with 
a fresh compound containing medium. At 24 h post infection, we measured 
viral RNA copy number in cell supernatant using real-time PCR16. Briefly, the 
viral RNA was extracted from the cell culture supernatant using the MiniBEST 
Viral RNA/DNA Extraction Kit (Takara, catalog no. 9766) according to the 
manufacturer’s instructions. Then 3 μl total RNA was digested with genomic DNA 
eraser to remove contaminated DNA. In a 20 μl reaction system, the first-strand 
complementary DNA was synthesized, from which 2 μl of cDNA was used as a 
template for the next step of quantitative PCR. The primers used for quantitative 
PCR were RBD-qF1: 5′-CAATGGTTTAACAGGCACAGG-3′ and RBD-qR1: 
5′-CTCAAGTGTCTGTGGATCACG-3′. The PCR amplification was performed as 
follows: 95 °C for 5 min followed by 40 cycles consisting of 95 °C for 15 s, 54 °C for 
15 s and 72 °C for 30 s. DMSO was used in the controls. At least two independent 
experiments were carried out for each compound.

The cytotoxicity assay. The cytotoxicity of the tested drugs on Vero E6 were 
determined by CCK8 assays (Beyotime).

Statistical analysis. The IC50 values were expressed as mean ± s.d. from two 
independent experiments. The EC50 values were expressed as mean ± s.d. from 
three independent experiments. All values were determined via the nonlinear 
regression analysis using GraphPad Prism software v.8.0 (GraphPad Software).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
EM density maps and atomic models have been deposited in the EMDB and PDB, 
respectively, with the accession codes EMD-30572 and PDB 7D4F. Source data are 
provided with this paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Purification and characterization of the RdRp complex. a, Gel filtration profile of the RdRp complex with nsp7 and nsp8. b, SDS 
gel of the purified RdRp complex with nsp7 and nsp8. c, Gel mobility shift of the RdRp-RNA complex and the effect of RDV-TP. d, IC50 of RDV-TP for the 
RdRp complex, determined by two independent experiments and error bars means s.d. of the data. e, EC50 of remdesivir for SARS-CoV-2 inhibition and 
CC50 of remdesivir for cell-based toxicity, determined by three independent experiments and error bars means s.d. of the data. f, The structures of PPADS 
and iso-PPADS. g, Elongation of partial RNA duplex by the purified RdRp complex and its inhibition by 9 suramin derivatives at 0.5-5.0 mM concentrations 
depending on the solubility of each compound.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Single particle cryo-EM analysis of the RdRp-suramin complex. a, Representative cryo-EM micrograph of the RdRp-suramin 
complex. b, Representative 2D class averages of the RdRp-suramin complex. c, Fourier shell correlation curves of cryo-EM map for the suramin-RdRp 
complex. d, Euler angle distribution of particles used in the final reconstruction. e, Flowchart of cryo-EM works of the suramin-RdRp complex with maps 
colored by local resolution (Å).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Cryo-EM map for the RdRp in complex with suramin. a-g, Cryo-EM map and model of nsp12 (residues 111-116, contour σ level: 4σ) 
(A), nsp8-1 (residues 127-132, contour σ level: 6σ) (B), nsp12 (residues 169-199, contour σ level: 6σ) (C), nsp7 (residues 26-40, contour σ level: 6σ) (D), 
nsp8-2 (residues 85–95, contour σ level: 5σ) (E), and the two bound suramin molecules (F and G, suramin#1, contour σ level: 5.5σ; suramin#2, contour σ 
level: 3.5σ).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Structural comparisons of the SARS-CoV-2 RdRp-suramin structure with the apo–RdRp structure and other structures of 
replication/transcription complex (RTC). Overall views of the RdRp-suramin structure overlapped with the apo RdRp structure (PDB ID: 7BV1) in 
panel a; the nsp132-RTC structure (PDB ID: 6XEZ) in panel b; the cap (-1)’-RTC structure (PDB ID: 7CYQ) in panel c; and the form 1 mini RTC structure 
(PDB ID: 7CXM) in panel d. For clarity, only the polymerase domains are shown. The thumb, palm and fingers domains of the RdRp of the SARS-CoV-2 
RdRp-suramin structure are in blue, orange and red, respectively, with the two suramin molecules in green. The other RdRp complex structures are in  
light gray.
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Extended Data Fig. 5 | Comparison of SARS-CoV-2 RdRp-suramin complex with MNV (Murine Noroviruses) RdRp-suramin complex and MNV 
RdRp-NF023. a, Superimposition of the SARS-CoV-2 RdRp-suramin structure with the MNV RdRp-suramin structure (PDB ID: 3UR0) based on the 
polymerase domain. Only the polymerase domain of SARS-CoV-2 RdRp is shown. RdRp in MNV RdRp-suramin structure is in light gray with the two 
suramin molecules in yellow. The thumb, palm and fingers domains in the RdRp of SARS-CoV-2 RdRp-suramin structure are in blue, orange and red, 
respectively, with the two suramin molecules in green. b, Superimposition of SARS-CoV-2 RdRp-suramin structure with MNV RdRp-NF023 structure  
(PDB ID: 3URF) based on the polymerase domain. The RdRp in MNV RdRp-NF023 structure is in light gray with the NF023 molecule in magenta.  
The thumb, palm and fingers domains in the RdRp of SARS-CoV-2 RdRp-suramin structure are in blue, orange and red, respectively, with the two suramin 
molecules in green. c, A close view of the suramin within the catalytic site in the MNV RdRp-suramin structure, color code as in panel a. d, A close view  
of the suramin within the catalytic site in the SARS-CoV-2 RdRp-suramin structure, color code as in panels a and b. e, A close view of the NF023 within  
the catalytic site in the MNV RdRp-NF023 structure, color code as in panel b.
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Extended Data Fig. 6 | Comparison of SARS-CoV-2 RdRp-suramin complex with MNV RdRp-suramin derivative 6 complex and HNV (Human 
Noroviruses) RdRp-suramin derivative 6. a, Superimposition of SARS-CoV-2 RdRp-suramin structure with MNV RdRp-suramin derivative 6 structure 
(PDB ID: 4NUR) based on the polymerase domain. Only the polymerase domain of SARS-CoV-2 RdRp is shown. The RdRp in MNV RdRp-6 structure is in 
light gray with the suramin derivative 6 molecule in light blue. The thumb, palm and fingers domains in the RdRp of SARS-CoV-2 RdRp-suramin structure 
are in blue, orange and red, respectively, with the two suramin molecules in green. b, Superimposition of SARS-CoV-2 RdRp-suramin structure with HNV 
RdRp-suramin derivative 6 structure (PDB ID: 4NRT) based on the polymerase domain. The RdRp in HNV RdRp-6 structure is in light gray with suramin 
derivative 6 in cyan. The thumb, palm and fingers domains in the RdRp of SARS-CoV-2 RdRp-suramin structure are in blue, orange and red, respectively, 
with the two suramin molecules in green. c, A close view of the suramin derivative 6 within the active site in the MNV RdRp-suramin derivative 6 structure, 
the color code is used as in panel a. d, A close view of the suramin within the active site in the SARS-CoV-2 RdRp-suramin structure, the color code is used 
as in panels a and b. e, A close view of the suramin derivative 6 within the active site in the HNV RdRp-suramin derivative 6 structure, the color code is 
used as in panel b.
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